Частное образовательное учреждение высшего образования

Приамурский институт агроэкономики и бизнеса

Кафедра информационных технологий и математики

фонд оценочных средств по учебной дисциплине Экономико-математические методы и модели

Уровень высшего образования: БАКАЛАВРИАТ

направление подготовки:

38.03.02. Менеджмент

профиль подготовки: Управление малым бизнесом

Форма обучения: заочная

Хабаровск 2016 г.

ПАСПОРТ ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ ПО ДИСЦИПЛИНЕ

«Экономико-математические методы и модели»

№ π/π	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции	Наименование оценочного средства
1	Тема 1. Моделирование поведения потребителя. Задача о максимальном выборе потребителя Тема 2. Моделирование поведения потребителя. Задача о максимальном выборе потребителя. Предельный анализ функции полезности. Кривые безразличия и их виды. Тема 3. Моделирование покупательского спроса. Функция оптимального спроса Тема 4. Моделирование поведения производителя. Задача о максимальном выборе производителя Тема 5. Модели естественного роста. Рост с постоянными темпами. Логистический рост. Тема 6. Теория двойственности. Примеры двойственных задач. Решение симметричных пар двойственных задач.	ПК-10, ПК-13, ПК-18	Вопросы по темам, Комплекты задач, Контрольная работа, ИДЗ.

ВОПРОСЫ ДЛЯ СОБЕСЕДОВАНИЯ

ПО ДИСЦИПЛИНЕ "ЭКОНОМИКО-МАТЕМАТИЧЕСКИЕ МЕТОДЫ И МОДЕЛИ»

К теме 2

- 1. Дать понятие функции полезности и сформулировать ее свойства.
- 2.Дать понятие предельной полезности благ и сформулировать закон убывающей полезности.
 - 3. Дать определение предельной нормы замещения благ.
 - 4. Сформулировать модель поведения потребителя на рынке.
 - 5. Сформулировать задачу о максимальном выборе потребителя.

К теме 3

- 1. Дать определение оптимальной функции спроса.
- 2. Дать понятие предельного спроса относительно цены и дохода.
- 3. Дать определение и записать формулу эластичности спроса относительно цены и предложения.
 - 4. Дать определение дуговой и перекрестной эластичности спроса.
 - 5. Дать понятие компенсирующего и эквивалентного изменения дохода.

К теме 4

- 1. Дать определение производственной функции и сформулировать ее свойства.
- 2. Сформулировать закон убывающей производительности факторов производства.
- 3. Дать определение предельной нормы замещения ресурсов.
- 4. Что характеризуют в производственной функции Кобба-Дугласа степенные коэффициенты?
 - 5. Сформулировать задачу о максимальном выборе производителя.
 - 6. Дать экономический смысл множителя Лагранжа.
 - 7. Сформулировать условие наиболее экономичного производства.
 - 8. Сформулировать условие максимизация прибыли для конкурентного и монопольного рынков.

К теме 5

- 1. Дать формулировку модели естественного роста с постоянным темпом.
- 2. Дать формулировку модели естественного роста в условиях конкуренции.

К теме 6, 8-11

- 1. Сформулировать основную, общую и стандартную задачу линейного программирования (ЗЛП).
- 2. Дать понятие допустимого и оптимального решения ЗЛП.
- 3. Перечислить этапы решения ЗЛП с двумя переменными графическим методом.
- 4. Дать понятие свободных и базисных переменных.
- 5. Перечислить этапы приведения задачи линейного программирования со многими переменными к задаче линейного программирования с двумя переменными.
 - 6. В чем заключается суть аналитического симплексного метода?
 - 7. Сформулировать основную теорему симплексного метода.
 - 8. Пояснить правило прямоугольника в табличном симплексном методе.

- 9. Сформулировать алгоритм двойственного симплексного метода
- 10.В чем заключается правило Гомори?
- 11. Сформулировать свойства симметричной пары двойственных задач.
- 12. Сформулировать правило решения пары двойственных задач.
- 13. Сформулировать основную теорему двойственности.

Критерии оценки по каждой теме:

- \checkmark <u>5</u> баллов выставляется студенту, если раскрыты и точно употреблены основные понятия, использованы при ответе примеры, иллюстрирующие теоретические положения, полно и оперативно отвечает на дополнительные вопросы.
- \checkmark <u>4</u> баллов выставляется студенту, если частично раскрыты основные понятия, в целом материал излагается полно, ответил на большую часть дополнительных вопросов.
- ✓ _2_ баллов выставляется студенту, если раскрыта только меньшая часть основных понятий, допущены существенные неточности и ошибки при изложении материала, не использовал примеры, иллюстрирующие теоретические положения.

ТЕСТ ПО ДИСЦИПЛИНЕ

- 1. К задачам оптимизации относятся задачи на отыскание:
- 1) целевой функции
- 2) решения системы уравнений
- 3) максимума или минимума целевой функции
- 4) решение систем неравенств.
- 2. Задача линейного программирования

$$L = 2x_1 + 3x_2 - x_3 \rightarrow \min$$

$$\begin{cases} 3x_1 + 5x_2 = 0 \\ 2x_1 + x_2 + x_3 = 3 \\ -x_1 - x_2 + 3x_3 = 2 \\ x_i \ge 0 \end{cases}$$

записана в:

- 1)основной форме
- 2)матричной форме
- 3)общей форме
- 4)стандартной форме.
- 3. Опорное решение ЗЛП, приводящее к максимуму или минимуму целевую функцию, называют _____ планом (решением) ЗЛП:
- 4. Геометрический метод решения задач линейного программирования можно применить только в том случае, когда число переменных в стандартной задаче равно _____
- 5. При графическом решении задачи:

$$L = -4x_1 - x_2 \to \min$$

При графическом решении задачи:
$$L = -4x_1 - x_2 \to \min$$

$$\begin{cases} -2x_1 + 3x_2 \le 6 \\ 3x_1 + 4x_2 \le 12 \end{cases}$$
 оптимальное решение достигается в точке:
$$x_j \ge 0$$

- 1)(4;0)
- 2)(0;2)
- 3)(0;0)
- 4)(1;2)
- 6. Максимальное решение задачи линейного программирования

$$L = -2x_1 - x_2 + 12 \longrightarrow \max$$

$$\begin{cases} x_1 + x_2 + x_3 = 2\\ x_1 + 2x_2 + x_4 = 10\\ 3x_1 - x_2 + x_5 = 3\\ x_1 \ge 0 \end{cases}$$

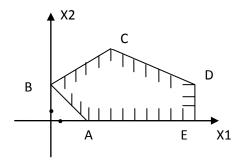
Равно:

- 1)(0; 2; 0; 10; 3)
- 2) (2; 0; 0; 10; 3)
- 3) (0; 0; 2; 10; 3)

- 4) (2; 10; 3; 0; 0)
- 7. Максимальное значение целевой функции задачи линейного программирования

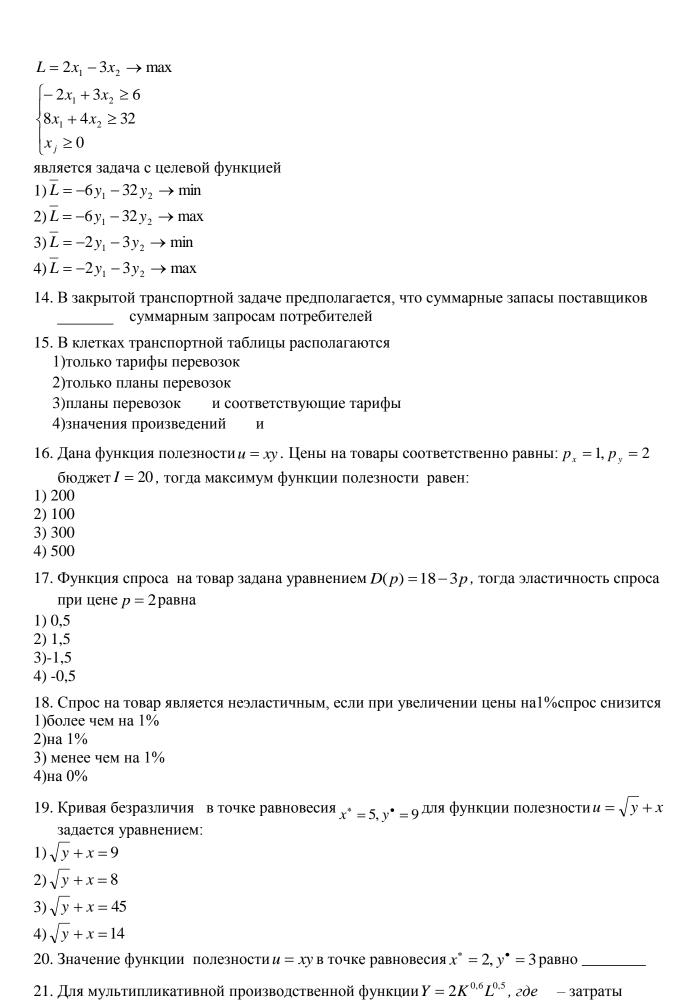
$$l = -x_1 - x_3 \rightarrow \max$$

$$\int x_1 + 6x_2 + x_3 = 5$$


$$x_1 - 2x_2 + x_4 = 1$$

$$\begin{cases} x_1 + 6x_2 + x_3 = 5 \\ x_1 - 2x_2 + x_4 = 1 \\ 2x_1 - 3x_2 + x_5 = 7 \end{cases}$$

$$x_i \ge 0$$


равно

- 1)0
- 2) 5
- 3) 1
- 4) 7
- 8. Минимум целевой функции $L = -2x_1 + 3x_2$

достигается в:

- 1)точке А
- 2)точке В
- 3)точке С
- 4) точке Е
- 5)точкеD
- 9. ЗЛП решается симплексным методом, если матрица коэффициентов системы ограничений:
- 1)содержит единичную подматрицу
- 2)не содержит единичной подматрицы
- 3)содержит нулевую подматрицу
- 4)содержит союзную подматрицу
- 10. Оптимальное решение в симплексной таблице определяется
- 1) по столбцу свободных членов
- 2) по строке целевой функции L
- 3) по разрешающей строке
- 4) по разрешающему столбцу
- 11. Элемент симплексной таблицы, находящийся на пересечении разрешающей строки и разрешающего столбца называется _____ элементом
- 12. Если в исходной задаче находят минимум целевой функции, то в симметричной двойственной задаче находят _____ целевой функции
- 13. Двойственной к задаче

- затраты труда, коэффициент эластичности по капиталу равен

капитала,

1)1,1
2)0,5 3) 0,6
4)3,1
22. Дана производственная функция выпуска $Y = 5K^{0.75}L^{0.25}$. Если затраты труда увеличатся на 1% , то выпуск продукции увеличится на $1)0,45\%$
2) 0,75%
3)0,25%
4)1 %
23. Дана производственная функция $Y = 2L^2 - L$, где L - затраты труда. Тогда предельная производительность труда при L =5 равна
24. Изокванта в точке равновесия $x^* = 1$, $y^{\bullet} = 3$ для производственной функции
F(x, y) = 2x + y задается уравнением:
1) 2x + y = 2
2) 2x + y = 5
3) $y = 5 - 2x$
4) 2x + y = 4
25. Зависимость между издержками производства C и объёмом продукции Q выражается
функцией $C = 20Q - Q^2$. Тогда предельные издержки $\frac{dC}{dQ}$ при объёме производства $Q = 5$
равны
26. Даны функции спроса $d(p) = 12 - 2p$ и предложения $s(p) = p + 3$, где p - цена товара.
Тогда эластичность спроса относительно равновесной цены равна: 1)1
2)-2
3)2
4) -1
27. Даны функции спроса $d(p) = 50 - 0.5p$ и предложения $s(p) = 0.5p + 40$, где p - цена товара.
Тогда равновесный объем «спроса-предложения» равен: 1) 45
2)54
3)36
4)18
28. Даны функции спроса $d(p) = 50 - 3p$ и предложения $s(p) = p + 10$, где p - цена товара.
Тогда эластичность предложения относительно равновесной цены равна
29. Общие издержки фирмы при объеме выпуска . Рыночная цена единицы продукции равна продукции достигается максимальная прибыль?
1) 2 2) 12
3) 4
4) 14
30. Общие издержки фирмы монополиста
. Зависимость между ценой и количеством продукции
задается уравнением . При каком объеме выпуска продукции достигается

максимальная прибыль?

- 1)
- 2)
- 3)
- 4)

№	Баллы	Описание	
5	19-20	Задание выполнено полностью и абсолютно правильно.	
4	16–18	Задание выполнено полностью и правильно, но решение содержит	
4	10-18	некоторые неточности и несущественные ошибки.	
3	9-16	Задание выполнено не полностью, с существенными ошибками, но	
3		подход к решению, идея решения, метод правильны.	
2	1-9	Задание выполнено частично, имеет ошибки, осуществлена попытка	
		решения на основе правильных методов и идей решения.	
1	0	Залание не выполнено.	

КОНТРОЛЬНАЯ РАБОТА №1:«ЗАДАЧИ О МАКСИМАЛЬНОМ ВЫБОРЕ ПОТРЕБИТЕЛЯ И ПРОИЗВОДИТЕЛЯ. ПОНЯТИЕ ЭЛАСТИЧНОСТИ СПРОСА»

- 1. Функция полезности имеет вид $u(x_1,x_2)=2\cdot\sqrt{x_1\cdot x_2}$, где x_1,x_2 количества двух благ. Найти максимум полезности, при ценах благ $p_1=10$ д.е., $p_2=40$ д.е. и доходе I=800 . Как должен измениться доход, чтобы после изменения цены одного из благ - $p_1=40$ д.е., можно достичь первоначального уровня полезности?
- 2. Производственная функция фирмы имеет вид: $y(x_1, x_2) = 10x_1^{\frac{1}{3}}x_2^{\frac{2}{3}}$. Цены покупки ресурсов
- 5 д.е. и 10 д.е. соответственно. Найти максимальный выпуск продукции при издержках C=100 д.е.?
- 3. Функция спроса на товар определяется линейным уравнением относительно цены $d \oint = a bp$, где $a,b \ge 0$, p цена товара. Записать уравнение зависимости между изменением выручки и спросом на товар. Рассчитать эластичность спроса и выручки при заданных значениях цены и сделать выводы. $d \oint = 30 p$; p = 3, p = 15, p = 20.

$N_{\underline{0}}$	Баллы	Описание	
5	5	Задание выполнено полностью и абсолютно правильно.	
4	4	Задание выполнено полностью и правильно, но решение содержит некоторые неточности и несущественные ошибки.	
3	3	Задание выполнено не полностью, с существенными ошибками, но подход к решению, идея решения, метод правильны.	
2	2	Задание выполнено частично, имеет ошибки, осуществлена попытка решения на основе правильных методов и идей решения.	
1	0	Задание не выполнено.	

КОНТРОЛЬНАЯ РАБОТА №2. «МАКСИМИЗАЦИЯ ПРИБЫЛИ В УСЛОВИЯХ КОНКУРЕНЦИИ И МОНОПОЛИИ»

- 1. Предприятие производит x единиц продукции в месяц, суммарные издержки определяются по формуле $C(x) = 50 + x^2$. Зависимость между ценой p и количеством единиц продукции x, которую можно продать по этой цене p(x) = 40 x. Рассчитать, при каких объемах производства прибыль будет максимальной.
- 2. Издержки конкурентной фирмы при объеме выпуска x равны $C(x) = 3x^2 + 4x + 8$. Рыночная цена единицы продукции p = 10. Найти объем выпуска, при котором достигается максимальная прибыль.
- 3. Компания имеет право на продажу товара некоторой марки. Приглашенная компанией фирма, специализирующая на рыночных исследованиях рассчитала, что месячный спрос на товар описывается уравнением $Q(p) = 800 4 \cdot p$, а общие месячные затраты на приобретение товара, его складирование и маркетинг описываются уравнением $C(Q) = 0.2 \cdot Q^2 + 2Qx + 98$.
- а) Сколько товара следует закупить и продать компании, чтобы максимизировать прибыль? Какова должна быть продажная цена, и какую прибыль получит компания?
- б) Если компания желает максимизировать доход, то как ей следует изменить цену? При какой цене доход будет максимальным? Будет ли максимизация дохода выгодной для компании?

№	Баллы	Описание	
5	5	Задание выполнено полностью и абсолютно правильно.	
4	4	Задание выполнено полностью и правильно, но решение содержит некоторые	
4		неточности и несущественные ошибки.	
3	3	Задание выполнено не полностью, с существенными ошибками, но подход к	
		решению, идея решения, метод правильны.	
2	2	Задание выполнено частично, имеет ошибки, осуществлена попытка решения	
2		на основе правильных методов и идей решения.	
1	0	Задание не выполнено.	

КОНТРОЛЬНАЯ РАБОТА № 3.«РЕШЕНИЕ СИММЕТРИЧНЫХ ПАР ДВОЙСТВЕННЫХ ЭКОНОМИЧЕСКИХ ЗАДАЧ»

Решить симметричную пару двойственных задач.

1.
$$L = 5x_1 + 2x_2 + 6x_3 \rightarrow \text{max}$$
,

$$\begin{cases} x_1 + x_2 + x_3 \le 6, \\ 2x_1 - x_2 + 3x_3 \le 9, \\ 3x_1 + x_2 + 2x_3 \ge 1, \\ x_j \ge 0, j = 1, 2, 3. \end{cases}$$

2.
$$L = x_1 - 2x_2 - 6x_3 \rightarrow \max$$
,

$$\begin{cases} x_1 + 4x_2 + 4x_3 + x_4 + x_5 = 5, \\ x_1 + x_2 + 3x_3 + 2x_4 + x_6 = 2, \\ x_j \ge 0, j = 1, \dots, 4. \end{cases}$$

3.
$$L = x_1 + 2x_2 + x_3 + 5x_4 \rightarrow \min$$

$$\begin{cases} 2x_1 + x_2 - x_3 + 5x_4 \le 5, \\ 3x_1 - 2x_2 + x_3 - x_4 \ge 4, \\ x_j \ge 0, j = 1, ..., 4. \end{cases}$$

No	Баллы	Описание	
5	5	Задание выполнено полностью и абсолютно правильно.	
4	4	Задание выполнено полностью и правильно, но решение содержит некоторые	
4		неточности и несущественные ошибки.	
3	3	Задание выполнено не полностью, с существенными ошибками, но подход к	
		решению, идея решения, метод правильны.	
2	2	Задание выполнено частично, имеет ошибки, осуществлена попытка решения	
		на основе правильных методов и идей решения.	
1	0	Задание не выполнено.	

КОМПЛЕКТ ЗАДАНИЙ ДЛЯ ИДЗ

Тема 1. Предельный анализ функции полезности. Кривые безразличия и их виды.

Пример ИДЗ 1. Функция полезности имеет вид: $u(x_1; x_2) = (x_1 + 4)(x_2 + 5)$, бюджет потребителя I = 55, известны цены первого и второго блага $p_1 = 2$; $p_2 = 1$.

Требуется:

- a) составить уравнение кривой безразличия, на которой находится потребитель в момент равновесия;
- б) определить функции спроса на первое и второе благо в момент равновесия потребителя;
- в) определить функцию спроса на первое благо после достижения нового равновесия, связанного с повышением цены на второе благо до двух единиц.
- г) построить кривую безразличия в точке равновесия, построить карту кривых безразличия.

Тема 2. Изменение цен и компенсация.

Пример ИДЗ 2. Функция полезности имеет вид: $u(x_1; x_2) = (x_1 + 4)(x_2 + 5)$, бюджет потребителя I = 55, известны цены первого и второго благ $p_1 = 2$; $p_2 = 1$.

Требуется: на основании данных, полученных при выполнении ИДЗ №1- определить разность между компенсирующим и эквивалентным изменениями дохода.

Тема 3. Модели естественного роста в условиях конкуренции.

Пример ИДЗ 3. Цель работы – исследование модели естественного роста в условиях конкуренции. Объектом исследования будет являться продажа телефона «Samsung A 35», предприятием «Евросеть» в г.Хабаровске.

Рассмотрим исходные данные по спросу на сотовый телефон за период с мая 2013 года по апрель 2014 года и занесем данные в таблицу.

Таблица – Данные по спросу на с	сотовые телефоны «Samsung A 35»
---------------------------------	---------------------------------

Месяц	Объем продаж	Цена (Р)	Общая Выручка (У)
май	12	10000	120000
июнь	15	10100	151500
июль	15	10500	157500
август	18	10300	185400
сентябрь	20	9500	190000
октябрь	23	9000	207000
ноябрь	23	9000	207000
декабрь	25	8800	220000
январь	25	8500	212500
февраль	33	8450	278850
март	36	8300	298800
апрель	40	8250	330000

Критерии оценки по каждой теме:

✓ _6__ баллов выставляется студенту, выполнившему задания не менее, чем на 90 %, умеющему свободно выполнять практические задания, предусмотренные программой.

- \checkmark 4 баллов выставляется студенту, выполнившему задания не менее, чем на 80%, продемонстрировавшему владение основными практическими умениями и навыками не менее чем по 80% необходимого объема работы.
- ✓ 3_ баллов выставляется студенту, выполнившему задания не менее, чем на 60%, справившийся с выполнением большинства (60%) практических навыков, умений, обнаруживший знания основного учебного материала в объеме, необходимом для дальнейшей учебы.

ВОПРОСЫ К ЗАЧЕТУ ПО ДИСЦИПЛИНЕ

- 1. Моделирование поведения потребителя. Задача о максимальном выборе потребителя
- 2. Моделирование поведения потребителя. Задача о максимальном выборе потребителя.
- 3. Предельный анализ функции полезности.
- 4. Кривые безразличия и их виды.
- 5. Моделирование
- 6. покупательского спроса.
- 7. Функция оптимального спроса
- 8. Моделирование поведения производителя.
- 9. Задача о максимальном выборе производителя
- 10. Модели естественного роста. Рост с постоянными темпами.
- 11. Модели естественного роста. Логистический рост.
- 12. Теория двойственности. Примеры двойственных задач.
- 13. Теория двойственности. Решение симметричных пар